
EverettKeeneNkora (09/30/98 2:04 PM)

Page 1

Applying Software Reliability Engineering in the 90’s

William Everett, Senior Member, IEEE

Software Process and Reliability Engineering, Albuquerque

Samuel Keene, Fellow, IEEE

Performance Technology, Boulder

Allen Nikora, Member, Reliability Society and Computer Society

Jet Propulsion Laboratory, Pasadena

Key Words - Reliability, Software Reliability, Reliability Modeling and

Prediction, Software Reliability Tool Kits, Software Reliability Engineering (SRE)

Summary & Conclusions - This paper reviews the progress in software

reliability over the past 15 years and discusses the best tools and practices that can

be applied today. Software is seen to play an increasingly vital role over time, vis-a-

vis hardware, in terms of system content. The software content is increasing and,

often today, it is a key factor in safety critical applications in medicine,

transportation, and nuclear energy. Significant software content is found in almost

every system, appliance, and machine which we use. In addition, software is the

backbone of our business enterprise operations.

Consequently, producing reliable software is a mandate. Its development is

often the “long pole in the tent” driving the cycle time required to produce and field

a product. Most often, software is the main source of system reliability problems.

The best development practices are recommended, herein, for managing the

reliability of software. The development of software reliability models and user-

friendly tool kits is described. These tools allow software reliability to be measured,

tracked, and improved to meet the customer’s specified reliability. The ability to

measure software reliability promotes development focus, and consequently, its

improvement.

EverettKeeneNikora (09/30/98 2:04 PM)

Page 2

1.0 INTRODUCTION

1.1 Background

In 1984, Professor Martin Shooman wrote a benchmark article on the History of

Software Reliability [23]. Our paper updates the developments in software reliability that

have occurred since then. Koss notes that “software reliability has been so overlooked.. .

As late as 1986-7 (some) major command and control systems had not made one

assessment of software reliability”[l4]. He pointed out that the software in modern

warplanes exceeds a million lines of code. He further states that “the ability to deliver

reliable computer hardware can be considered to be a given. It is the ability to deliver the

software of the system which will determine the extent to which the total system meets its

operational availability.” All too often, software reliability continues to be neglected.

Even today, too few organizations even measure software reliability and some of those

who do only measure it from a historical perspective. To be proactive, software

reliability should be managed throughout the development process, starting from the

requirements definition phase. This paper addresses some worthwhile initiatives to better

manage and measure software reliability.

Software reliability is the dominant driver of today’s system reliability. Software

driven outages have been reported to exceed hardware outages by an order of magnitude

[131. Murphy points out that the main driver of field problems on over 2,000 European

deployed Digital Equipment Corporation Systems fall into the class of System

Management failures [20]. These problems are due to requirements and interface

deficiencies. The present authors recognize these problem causes as a subset of software

faults.

It should be noted that some noted reliability practitioners still question whether

software can indeed fail. They argue that nothing actually “breaks” since its physical

state remains unchanged-thus, “no broken” code exists. What fails is the software’s

ability to perform its intended or desired function, forcing the customer-the final

arbitrator-to declare failure.

Everett/Keene/Nikora (09/30/98 2:04 PM)

Page 3

Software is proliferating in our every day products. Software is also embedded in

machine logic in the form of “firmware”. Firmware is software that resides in a non-

volatile medium that is read-only in nature and is write-protected when functioning in its

operational environment. It cannot be modified during program execution. Many

common products have significant firmware content. Automobiles, telephone routers,

and some appliances incorporate up to 1,000,000 bytes of stored firmware. Firmware

promotes personalization of the equipment’s functionality so it can be customized to fit

different application needs. This firmware capability also provides control and diagnostic

information. This design flexibility and extra functionality can lead to reliability and

safety problems.

1.2. Notable Reliability and Safety Problems

Unfortunately, software is not built with the same degree of provable components

found in hardware. It is also not tested as exhaustively as hardware and thus tends to

have more residual design problems. Commercial software products typically are shipped

with one or more defects per KSLOC. One defect per KSLOC would be considered a

relatively good latent defect level. This means that a 1,000 KSLOC of code, contains

1,OOO latent defects at shipment. These defects will be left to the customer to potentially

experience before they are removed. To some hardware designers, this defect level would

seem excessively high to their standards.

Software has caused some high profile reliability and safety problems. Neumann

produced an excellent synopsis of many of these problems [2 11. The Neumann web page

also publicizes current software and system problems.

For example, the Therac 25 therapy accelerator irradiates tumors in two modes:

electron beam bombardment and X-ray mode. The first therapy mode is low energy

bombardment. The second mode Intersperses a Tungsten target into the electron beam

before raising the beam energy one hundred fold. This puts the Therac 25 into the X-ray

therapy mode. When “malfunction 54” appeared on the operator’s screen, the system’s

operating modes became scrambled--exposing the patients with a lethal level of electron

beam radiation. “Malfunction 54” has killed two people and harmed several more [9].

EverettKeeneNikora (09/30/98 2:04 PM)

Page 4

Therac 6, the predecessor irradiation model used mechanical interlocks rather than

software interlocks. It never experienced this safety critical failure mode. .

Another example is the Patriot missile system. The United States used this

weapon against the Iraqi’s Scud missiles in the Persian Gulf war. During this war, they

discovered a deadly design flaw: the Patriot missile had an imprecise timing calculation.

This calculation appears to be responsible for the missile’s failure to detect and engage

the Scud missile that killed and injured troops in Tehran [22]. The original operational

profile for the Patriot missile required it being relocated twice a day. This was necessary

to keep a sophisticated enemy from tracking the Patriot’s location from its own radar

emissions. The Patriot’s software was re-initialized every time it moved. This reset the

accumulating timing error to zero twice a day. Because Iran was not considered a

sophisticated enemy, the Patriots were left in place for long periods of time. The timing

errors accumulated to the point of defeating the missile’s ability to intercept Scud

missiles, resulting in 126 casualties.

Another subtle design problem was subsequently found with the Patriot’s

software. Two different and unequal versions of the number 0.1 were implemented in 24-

bit and 48-bit representations [21]. This led to a residual comparative error when there

should have been none.

The most widely discussed reliability problem, in history, is the year 2000 or Y2K

problem. Caper Jones estimated that the total industry cost to repair this one type defect

is $276 billion US [101. The problem is that so much of our legacy code is programmed

in two digits instead of four digits. Consequently, these defective program dates will roll

over at the turn of the century and the system will believe the date is 1900. Voas states to

understand the magnitude of the problem consider the grocery store checkout lane [24].

Ever been in a line when the grocery scanner is not working or the credit card reader is

not working? The clerk and the customer are quickly frustrated. Pandemonium reigns.

Now imagine that this same experience is happening in offices, businesses, and stores

everywhere. The impact could be disastrous--and possibly lethal. Some analysts worry

that Y2K could send the economy into a recession as the cost of the problem rivals the

EverettIKeeneLNikora (09/30/98 2:04 PM)

Page 5

annual budget for software production [181. Clearly, the best development practices and

tools are needed to thwart such problems from occurring.

2.0 Software Reliability Engineering

2.1 Development of Best Practices
Nearly 31 years have transpired since Hudson’s first significant study of software

reliability [4]. Most of these early studies were focused on applying reliability growth

models to failures data collected during the testing or field operation of software

products. By the late 1980’s, between 50 and 100 models surfaced for software

reliability. A good summary of the history of these earlier developments is provided in

[6]. The number of these models reflected an active and healthy period of research.

Although sufficient models existed to analyze the reliability of software, no

guidelines and practices were available to help practitioners apply them to their products.

Moreover, the shear number of models only added to their confusion. To address this

problem, the American Institute of Aeronautics and Astronautics established a Blue

Ribbon panel. The panel recommended four reliability growth models and provided

procedures for collecting reliability data to use with these models El]. The models

recommended were:

0 The Schneidewind Model.

0 The Jelinski/Moranda Model.

Musa/Okumoto Logarithmic Poisson Execution Time Model.

0 The Littlewood Verrall Model.

The AIAA guidebook recommends that projects apply several models to estimate

reliability and compare results by using each model. Several factors are suggested for

comparing model results including:

EverettKeeneNikora (09/30/98 2:04 PM)

Page 6

*how valid are model predictions?

*how easy is it to acquire measurement data to use the model?

*how close are models assumptions met by situation being modeled?

*can the model estimate useful quantities needed by project personnel?

*how robust is the model to changes in the test and operational environment?

*is the model and its use simple to understand?

*is the model insensitive to noise?

Around 1988, efforts were initiated to encourage more active use of software

reliability methods by practitioners. At that time, AT&T Bell Laboratories introduced a

sequence of internal courses around the notion of software reliability engineering (SRE).

The definition of SRE went beyond modeling and measuring the reliability of software to

include the application of these models and measures to managing the reliability of

software. In 1990, they held a kick-off meeting of the IEEE Subcommittee on Software

Reliability Engineering. This was the start of an annual series of international

symposiums on SRE (ISSRE). The eighth annual symposium, ISSRE '97, was just held

in Albuquerque New Mexico. These symposia not only provided forums for

communication among researchers, but also among practitioners. Over 60% of the

attendees of ISSRE '97 were from industry or government. Although early ISSREs had a

strong focus on modeling methods, more varied topics have been covered in later

ISSREs. ISSRE '97 included sessions on Fault-Prone Module Identification, Error

Detection and Handling, Test Strategies, Software Process Effectiveness, and Process

and Quality-plus a number of industry practice sessions. (See reference [7] .) A case

studies handbook [8] highlighting particular industrial and practical applications of SRE

was also published as part of ISSRE '97.

2.2 SRE Institutionalized

In 1992, AT&T Bell Laboratories adopted a best current practice for doing SRE.

(A condensed version can be found in [3]). This practice defined 25 activities that should

be included in a good SRE program. (See Table 1.) As Table 1 shows, the practice

EverettKeeneNikora (09/30/98 2:04 PM)

Page 7

covers the entire life cycle of product development--from the earliest stages of product

conceptualization through post delivery support of the product.

Life Cycle Phase

Feasibility

And

Requirements

~

Design

And

Implementation

System Test

And

Field Trial

Post Delivery

And

Maintenance

SRE Activities

0 Determine functional profile

0 Define and classify failures

0 Identify customer reliability needs

0 Conduct trade-off studies

0 Set reliability objectives

0 Allocate reliability among components

0 Engineer to meet reliability objectives

0 Focus resources based on functional profile

0 Manage fault introduction and propagation

0 Measure reliability of acquired software

0 Determine operational profile

0 Conduct reliability growth testing

0 Track testing progress

0 Project additional testing needed

0 Certify reliability objectives are met

0 Project post-release staff needs

0 Monitor field reliability versus objectives

0 Track customer satisfaction with reliability

0 Time new feature introduction

0 Guide product and process improvement

Table 1. SRE life cycle activities

2.3 SRE Activities

Activities during the Feasibility and Requirements phase focus on establishing

reliability requirements for the product. It starts with the user of the product and includes

defining what types of failures the potential user may experience in using the product and

Everett/Keene/Nikora (09/30/98 2:04 PM)

Page 8

how costly these failures would be to the user in the work that they do. The likelihood of

failures in a software product depends heavily on how the user employs the product.

During the early stages of product development, this usage is captured in something

called a functional profile. The functional profile describes high level functions

performed by the user and how often these functions are performed. Trade-offs need to

be made in establishing overall product requirements. Although adding more features

into a software product will make it more desirable to a user, it will also add to the

development costs--especially to those costs related to managing product reliability,

From a reliability standpoint, the outcome of the Feasibility and Requirements

phase is a set of reliability requirements. Properly defining system and software

requirements is most important since requirement deficiencies are typically the number

one cause of problems with field maintenance [12]. These requirements must not only

specify objectives by failure class, but also the conditions under which the objectives are

to be met. Understanding them is an evolutionary process that works best when they are

the collaborative effort of both the developer and the customer.

Activities during the Design and Implementation phase are focused on developing

a product that meets reliability objectives. The first activity is to allocate overall

reliability among the components of the product. A number of steps can be taken to

engineer the product so it meets its reliability objectives. A number of these are a

carryover from hardware and system reliability methods. They include techniques such as

fault tree analysis (FTA) and failure mode and effects analysis (MEA). Since software

failures are caused by residual faults in their design and development process, reliability

methods must target processes that introduce faults and allow them to propagate to later

development phases.

In addition, today’s software products may include new or reused components

developed (by other organizations). The reliability of this acquired software must also be

managed.

Activities during the System Test and Field Trial phase are targeted at validating

the developed software so it meets its reliability objectives. In product testing, we must

Everett/Keene/Nikora (09/30/98 2:04 PM)

Page 9

mimic how the customer will use the software if we want an accurate view of the

product’s reliability.

The functional profile developed during the Feasibility and Requirements phase provides

a start in specifying how the user will use the product. With the product designed and

developed, we redefine the functional profile in terms of operations offered by the system

to perform specific functions. For example, in an Automated Teller Machine (ATM)

product, a function would be for a user to deposit money while the operations would be

the ATM screens the user would need to do the deposit. The result would be an

operational profile. Again, the operational profile will be used in developing test cases

and in specifying the frequency and order in which they will be run. Failure data is

collected during testing and is used to calibrate a reliability growth model. The calibrated

model is used in turn to tell us the current level of reliability of the software product and

can even be used (with adequate collected data) to estimate the remaining testing time

needed to reach a reliability objective. Reliability growth is experienced during testing

because once a failure is encountered, the underlying fault that triggered the failure is

removed and thus will never cause another like failure.

The management of reliability does not stop when the product is delivered to the

user, it continues during the Post Delivery and Maintenance phase. One activity focuses

on estimating the amount of staff needed to provide hot-line support to help users with

field-reported failures and staff needed to fix the software product. Field reliability of the

software product should still be tracked to ensure the user is satisfied with product

reliability. As fixes are introduced into the fielded software product, reliability will

continue to grow. We should time the release of new software with major feature

enhancements at points where the reliability level perceived by the user continues to be

acceptable. Finally, we will use the information we gathered during this phase to

improve our development processes that impact reliability and to improve the reliability

of subsequent releases of the software product or new products.

3.0 RELIABLlTY MODELING

3.1 Modeling Background

EverettKeeneNikora (09/30/98 2:04 PM)

Page 10

Another important step in making SRE techniques more accessible to

practitioners was the development of tools. Although a large number of software

reliability models have been published since the first models were published in 197 1, it is

only since the mid-1980s that tools implementing these models have become widely

available. Prior to their advent, development organizations wishing to use software

reliability modeling techniques to monitor and control their development efforts had little

choice but to develop their own tools. Because of the computational complexity of the

models, the development of a software reliability modeling tool is a significant effort in

its own right--and one to which many organizations were not willing to devote resources

that could be applied to producing commercial systems. The advent of widely available

tools could then be considered as important as increasing interest in the use of software

reliability measurement.

One of the first software reliability measurement tools was developed by AT&T in

1977. Although originally intended for in-house use, it has been commercially available

for the past ten years. The tool implements two models: the Musa Basic and

MusdOkumoto logarithmic Poisson models. The tool outputs can easily be related back

to the development process. Rather than simply providing estimates of the model

parameters, the tool provides estimates of initial current failure intensities as well as

confidence intervals around these estimates. In addition, it predicts the amount of time

required achieving user-specified failure intensity as well as the number of additional

failures that will be seen before the specified failure intensity is achieved. This tool takes

both time-domain and interval-domain failure data as input. Outputs are shown in both

tabular and graphical fashion. Besides the outputs mentioned above, other plots are

available which allow users to see how well the mode1 results fit the data, to see trends in

the initial and current failure rates, and to see predictions of a development effort’s

completion date.

3.2 SMEWS Tool

One of the next major achievements was the development of SMEWS (Statistical

Modeling and Estimation of Reliability Functions for Software) at the Naval Surface

EverettIKeeneNikora (09/30/98 2:04 PM)

Page 1 1

Warfare Center in Dahlgren, VA. First released in 1983, this was the first tool to

implement a wide variety of software reliability models. It included interval-domain (e.g.,

Schneidewind, Yamada S-Shaped, Brooks and Motley) as well as time-domain (Musa

Basic, MusdOkumoto, Littlewood-Verrall) models. This last can be of particular interest

to development organizations, since failure history data tends to be more widely available

as the number of failures observed per test interval of a given length rather than as

interfailure times. SMEWS was designed for ease-of-use. It has a menu-driven

interface, which partitions the functionality into well-defined areas. These areas are data

entry, editing, and transformation; model application; and determination of model

applicability. Users can specify whether model parameters should be made using

maximum-likelihood estimation or least squares. Model results are displayed in an easy

to read tabular form and always include estimates of the model parameters. In addition,

each model has its own specific set of results. They include the following: expected time

to next failure, estimated total number of failures, estimate of the reliability for a

specified time, number of failures remaining in the system, and the expected number of

failures in a session of a specified duration. The sole model evaluation criterion for the

earlier versions was goodness-of-fit (Chi-square test for interval-domain data and 2-tail

Kolmogorov-Smirnov test for time-domain data). However, the current version also

includes prequential likelihood, model bias, bias trend, and noise [2]. SMEWS was also

designed to allow users to extend its capabilities. Unlike other software reliability

modeling tools, SMEWS is distributed with the source code, which is a subset of ANSI

FORTRAN '77, as well as design documentation. This allows users to customize the

user interface to meet their own needs, as well as add models of their own.

3.3 Other Tools

In 1988, Reliability and Statistical Consultants, Ltd. Developed the Software

Reliability Modeling Program (SRMP) in the United Kingdom Ltd. The distinguishing

feature of this program is its ability to include statistical methods other than goodness-of-

fit for identifying the most appropriate model for a set of failure history data. These

techniques have become an essential part of an analyst's tool kit. In 1986, Abdel-Ghaly

EverettKeeneNikora (09/30/98 2:04 PM)

Page 12

et a1 [2] had shown that it does not seem possible to select a priori the most appropriate

model for a development effort. Rather, a set of models should be run against a set of

failure data and the results analyzed to identify the most appropriate model. Abdel-Ghaly

and his associates developed a set of statistical methods for identifying:

How much more likely it is that one model will produce more accurate predictions

than another model. To compare two models, A and B, we first compute the

prequential likelihood functions for each model, PLA and PLB. The ratio PLA / PLB

specifies how much more likely it is that model A will produce accurate estimates

than model B, given that there is no preference for either model prior to applying

them.

The tendency for the model to produce biased results. For instance, a model may

consistently predict interfailure times shorter than those actually observed. The

technique for determining whether a model is biased is known as a u-plot.

The tendency for the model bias to shift with time. It may be that in the early stages

of a testing effort, a model will be optimistically biased (predicting interfailure times

that are shorter than those actually observed). During later stages of testing, the

model may assume a pessimistic bias (predicting longer interfailure times than those

actually observed). The technique for determining whether a model exhibits temporal

shifts in its bias is known as a y-plot.

SRMP computes the prequential likelihood, u-plot, and y-plot for each of the nine

models it implements, allowing users to determine the most appropriate model for their

development effort. Unlike SMEWS, SRMP does not include traditional goodness-of-fit

criteria such as the Chi-square or Kolmogorov-Smirnov tests, and implements only time-

domain models.

A distinguishing feature of the SoRel tool that was developed by LAAS, a

laboratory of the National Center for Scientific Research in Toulouse, France, is a set of

tests that can be applied to a set of failure data prior to model application to identify

trends in the failure data. As a software system undergoes test, there may very well be

times when the system is not experiencing reliability growth. For instance, the testing

staff may be producing tests with the specific intention of revealing faults. Or, as new

EverettKeeneNikora (09/30/98 2:04 PM)

Page 13

functionality is added to the system, the testing team will focus on the new functionality,

rather than sampling the operational profile. In either one of these cases, the failure data

may appear to exhibit no improvement in reliability or an actual reliability decrease. The

tests implemented by SoRel to identify these trends are the arithmetical test (e.g., a

running average of interfailure times), the Laplace test [111, the Spearman test, and the

Kendall test. This allows an analyst to determine whether a data set exhibits reliability

growth, reliability decrease, or determine that there is no identifiable trend. An

appropriate set of models can then be selected on the basis of these trend tests. None of

the other tools described above offer this capability. Like SMEWS and SRMP, SoRel

uses a variety of reliability models for either time-domain or interval-domain data. It also

computes goodness-of-fit, prequential likelihood, and the residuals for each model that is

run. SoRel runs on the Macintosh and is the only tool described so far to produce high-

resolution plots of model results, although it requires Excel to do its plotting.

3.4 CASRE Tool

In 1992, Computer Aided Software Reliability Estimation (CASRE) was developed in

response to a perception that many of the available software reliability tools were not easy

for non-specialists to use. The developers of CASRE wanted to provide a system,

suitable for use by both research and practitioners with the following characteristics:

Allow users to select from a wide variety of time-domain and interval-domain

models.

0 Display model results as high-resolution plots and in tabular form.

0 Guide users through the selection, execution, and evaluation of models through an

appropriate set of structured menus.

Minimize the amount of time required for users to learn how the tool, and minimize

the amount of time required to re-learn the tool after having not used it for an

extended interval.

Finally, one feature of CASRE drew on research indicating that one way of increasing the

predictive accuracy of software reliability models was to form weighted sums of the

EverettKeeneNikora (09/30/98 2:04 PM)

Page 14

results of several models [15, 161. In particular, linear combinations of model results in

which the weights of each component of the combination are determined by comparisons

of the change in the prequential likelihood values of each model over the past few

observations appeared to provide the greatest increase in predictive accuracy [161. The

distinguishing feature of CASRE is that it allows users to form linear combinations of

models according to one of three weighting schemes. CASRE runs in Windows 3.1,

Windows95, or WindowsNT. It uses the SMEW’S libraries to do the model

computations and evaluations, taking advantage of existing software known to be suitable

for the intended application and with an extensive history of use. The design of the user

interface was guided by interviews with potential users to help meet the criteria listed

above.

4.0 LAST THOUGHTS

Sometimes criticisms are heard that too many models of software reliability are a

sign that no one knows what is going on. The plethora of models can optimistically be

seen as evidence of the energy and excitement in the field. Obviously, extensive on-

going research and vitality exist. It is also worth citing again the recent Handbook on

Software Reliability. This is a very complete reference and would be a fundamental

library addition to anyone interested in exploring this field. The text also contains a CD

that has the reliability tools mentioned in this article.

Everett/Keene/Nikora (09/30/98 2:04 PM)

REFERENCES I Page l5

[I1 AIAA, “Software Reliability Estimation and Prediction Handbook”,
1992.

121 A. Abdel-Ghaly, P. Chan, and B. Littlewood, “Evaluation of Competing

Software Reliability Predictions,” IEEE Transactions on Software

Engineering, vol. SE-12, Sep. 1986, pp. 950-967.

[31 M. Donnelly, W. Bill Everett, J. Musa and G. Wilson, Best Current

Practice of SRE in Handbook of Software Reliability Engineering,

McGraw-Hill, 1996.

~ 4 1 G. Hudson, “Program Errors as a Birth and Death Process”,

System Development Corporation Report SP-3011, Santa Monica, Calif.

1967

A. Iannino, and J. Musa, and Software Reliability Engineering at AT&T in

Probabilistic Safety Assessment and Management, Elsevier Science

Publishing Co., Inc., 1991.

A. Iannino, Software Reliability Theory in Encyclopedia of Software

Engineering (J. J. Marichiniak - editor) Wiley-Interscience, 1994.

IEEE Computer Society, Proceedings of the Eighth International

Symposium on Softward Reliability Engineering, IEEE Computer Society

Press, November 1997.

IEEE Computer Society, Software Reliability Engineering Case Studies,

IEEE Computer Society Press, November 1997.

E. Joyce, “Software Bugs: A Matter of Life and Liability”, Datamation

Magazine, May 15, 1987, pp. 88-92.

C. Jones, “Year 2000: What’s the Real Cost?”, Datamation, 1997 March,

pp. 88-93.

K. Kanoun, M. Bastos Martini, J. Moreira De Souza, “A Method for

Software Reliability Analysis and Prediction - Application to the

Everett/Keene/Nikora (09/30/98 2:04 PM)

’ Page 16

TROPICO-R Switching System,”, IEEE Transactions on Software

Engineering, April 1991, pp. 334-344.

S. Keene, T. Keller, and J. Musa, “Developing Reliable Software in the

Shortest Duty Cycle,” IEEE Video Tutorial Tape, ISBN 0-7803-2850-7,

IEEE, Piscataway, N.J., (1-800-678-IEEE)

S. Keene, “Modeling Software R&M Characteristics”, ASQC Reliability

Review, Parts I and 11, Vol. 17, Nos. 2 & 3, 1997 June, pp. 5-28, 1997

Sept., pp. 13-22.

E. Koss, “Software Reliability Metrics for Military Systems”, 1988 Proc

Ann. Reliability and Maintainability Symposium, 1988, pp. 190-194.

M. R. Lyu and A. P. Nikora, “A Heuristic Approach for Software

Reliability Prediction: The Equally-Weighted Linear Combination Model,”

published in the proceedings of the IEEE International Symposium on

Software Reliability Engineering, May 17-18, 1991, Austin, TX

M. Lyu and A. Nikora, “Applying Reliability Models More

Effectively”, IEEE Software, vol. 9, no. 4, pp. 43-52, July

M. Lyu, (Editor), Handbook of Software Reliability Engineering,

McGraw-Hill, 1996.

M. Mandel, P. Coy, and C. Judge, “Zap! How the Year 2000 Bug will

Hurt the Economy”, Business Week, 1998 March 2, pp. 93-97.

J. Musa, A. Iannino, and K. Okumoto, Software Reliability: Measurement,

Prediction, Application, McGraw-Hill, 1987.

B. Murphy and T. Gent, “Measuring System and Software Reliability

Using an Automated Data Collection Process”, Quality and Reliability

Engineering International. 1995 xxxx

P. Neumann, “Computer Related Risks”, Addison-Wiley, New

York, 388 pages, p.34.

M.Riezenman, Ed., “Revising the Script After Patriot”, IEEE Spectrum,

1991 September, pp. 49-52.

M. Shooman, “Software Reliability: A Historical Perspective”, IEEE

EverettKeeneNikora (09/30/98 2:04 PM)

Page 17

Trans. Reliability, Vol. R-33, No. 1, 1984 April, pp. 48-55.

~ 4 1 J. Voas and G. McGraw, “Software Fault Injection”, John Wiley & Sons,
Inc., New York, 1998,354 pages.

Cooresponding author: Samuel Keene

650 Tamarack Ave 38 10

Brea, Ca 92821

FAX 7 14-446-3 132

Phone 7 14-446-3080

